
U.S. Department

Preprint
UCRL-JC-134123

Overture: Object-Oriented
Tools for Applications with
Complex Geometry

D.L. Brown, W.D. Henshaw and D. Quinlan

This article was submitted to
International Symposium on Computing in Object-Oriented Parallel
Environments
San Francisco, CA
December 7-10, 1999

of Energy May 31,1999
Lawrence
Livermore
National
Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

OVERTURE: OBJECT-ORIENTED TOOLS
FOR APPLICATIONS WITH COMPLEX

GEOMETRY

David L. Brown, William D. Henshaw, and Dan Quinlan’

Lawrence Livermore National Laboratory, Livermore, CA, USA,
dlb,henshaw,dquinlanQllnl.gov,

WWW home page: http://www.llnl.gov/CASC/people/dlb,henshaw,quinlan/

Abstract. The Overture framework is an object-oriented environment
for solving partial differential equations in two and three space dimen-
sions. It is a collection of C++ libraries that enables the use of finite
difference and finite volume methods at a level that hides the details
of the associated data structures. Overture can be used to solve prob-
lems in complicated, moving geometries using the method of overlapping
grids. It has support for grid generation, difference operators, boundary
conditions, data-base access and graphics. Short sample code segments
are presented to show the power of this approach.

1 Introduction

The Overture framework is a collection of C++ libraries that provide tools for
solving partial differential equations. Overture can be used to solve problems
in complicated, moving geometries using the method of overlapping grids (also
known as overset or Chimera grids). Overture includes support for geometry,
grid generation, difference operators, boundary conditions, data-base access and
graphics.

An overlapping grid consists of a set of logically rectangular grids that cover
a domain and overlap where they meet. This method has been used successfully
over the last decade and a half, primarily to solve problems involving fluid flow in
complex, often dynamically moving, geometries[2,3,11,12,23]. Solution values
at the overlap are determined by interpolation. The overlapping grid approach is
particularly efficient for rapidly generating high-quality grids for moving geome-
tries. As the component grids move only the boundary points to be interpolated
change, the grid points do not have to be regenerated. The component grids are
structured so that efficient and fast finite-difference algorithms can be utilized.
We use adaptive mesh refinement to resolve fine features of the solution. [l, 2,
201. The design of Overture has evolved over the past 15 years or so from the
Fortran based CMPGRD [8] environment to the current C++ version [5,6]. Al-
though the Fortran implementation was used for complicated three-dimensional
adaptive and moving grid computations, the programs were difficult to write and
maintain. Overture was designed to have at least all the functionality of the

Fortran code but to be as easy as possible to use; indeed, an entire PDE solver
on an overlapping grid can be written on a single page (see section 6).

Overture is an object-oriented framework. In the past a typical Fortran
code would use a procedural model where subroutines and functions are the
fundamental building blocks and data is passed to and from these procedures.
In Overture the fundamental building blocks are objects such as grids and
grid functions. These objects can be manipulated at a high level. Details of the
implementation, such as how a grid is stored, are hidden from the user. In the
object-oriented world this is known as data encapsulation. One major benefit of
encapsulation is that changes can be made to the implementation of an object
without forcing changes to be made to the code that uses the object. An object
such as a grid function contains not only data (such as the values of density at
each point on a grid) but also implements functions that operate on the data
(these functions are often called methods in object-oriented terminology). Thus
a grid function (which may live on a collection of grids on a overlapping grid)
will know what it means to add itself to another grid function, which would be
expressed in a C++ code as u = w + w. The ‘+’ operator and the ‘=’ operator
are defined by the grid function class, a process known as operator overloading.

A common complaint of object-oriented languages such as C++ is that it
is easy to write code that is elegant but runs many times slower than fortran.
It is certainly true that since C++ is a much richer language than fortran that
it is easy to write inefficient code. However, it is also true that by writing a
code in C++ with basically a fortran style that it is possible to achieve the
exact same performance of fortran (while still benefiting from some of the nice
features of C++). Overture has been designed to be used at different levels to
allow users to obtain full performance at the cost of writing at a lower level. Thus
one can either operate at a high level to write an entire code (with a decrease in
performance) or one may only use C++ to manage the complex data structures
while calling Fortran or C routines to perform computationally intensive tasks.
In the future it is likely that even the high level code can be made to run as fast
as the low level approach. We are currently working on a preprocessor that will
automatically convert high level C++ code into efficient C code. Initial results
show that full fortran performance can be obtained using the preprocessor.

There are a number of other very interesting projects developing scientific
object-oriented frameworks. These include the SAMRAI framework for struc-
tured adaptive mesh refinement[22] , PETSc (the Portable Extensible Toolkit
for Scientific Computation)[18] , POOMA (Parallel Object Oriented Methods
and Applications)[lS] and Diffpack[lO].

2 The OVERTURE FRAMEWORK

The main class categories that make up Overture are as follows:

- Arrays [21]: describe multidimensional arrays using A++/P++. A++ pro-
vides the serial array objects, and P++ provides the distribution and inter-
pretation of communication required for their data parallel execution.

Fig. 1. Displaying results from a moving grid computation using the Overture frame-
work.

- Mappings [15]: define transformations such as curves, surfaces, areas, and
volumes. These are used to represent the geometry of the computational
domain.

- Grids [9,14]: define a discrete representation of a mapping or mappings.
These include single grids, and collections of grids; in particular composite
overlapping grids.

~ Grid functions [14]: storage of solution values, such as density, velocity,
pressure, defined at each point on the grid(s).

- Operators [4,13]: provide discrete representations of differential operators
and boundary conditions

- Grid generation [16]: the Ogen overlapping grid generator automatically
constructs an overlapping grid given the component grids.

- Plotting [17]: a high-level interface based on OpenGL allows for plotting
Overture objects.

- Adaptive mesh refinement: The AMR++ library for patch based refine-
ment is described in section 4.

Solvers for partial differential equations, such as the OverBlown solver de-
scribed in section (7) are written using the above classes.

3 Array Operations

A++ and P++ [al] are array class libraries for performing array operations in
C++ in serial and parallel environments, respectively.

A++ is a serial array class library similar to FORTRAN 90 in syntax, but not
requiring any modification to the C++ compiler or language. A-t-+ provides an
object-oriented array abstraction specifically well suited to large scale numerical
computation. It provides efficient use of multidimensional array objects which
serves to both simplify the development of numerical software and provide a
basis for the development of parallel array abstractions. P++ is the parallel
array class library and shares an identical interface to A++, effectively allowing
A++ serial applications to be recompiled using P++ and thus run in parallel.
This provides a simple and elegant mechanism that allows serial code to be
reused in the parallel environment.

P++ provides a data parallel implementation of the array syntax represented
by the A++ array class library. To this extent it shares a lot of commonality
with FORTRAN 90 array syntax and the HPF programming model. However,
in contrast to HPF, P++ provides a more general mechanism for the distribu-
tion of arrays and greater control as required for the multiple grid applications
represented by both the overlapping grid model and the adaptive mesh refine-
ment (AMR) model. Additionally, current work is addressing the addition of
task parallelism as required for parallel adaptive mesh refinement.

Here is a simple example code segment that solves Poisson’s equation in
either a serial or parallel environment using the A++/P++ classes. Notice how
the Jacobi iteration for the entire array can be written in one statement.

// Solve u-xx + u-yy = f by a Jacobi Iteration
Range R(O,n) // . . . define a range of indices: 0,1,2,...,n
floatArray u(R,R), f(R,R) // . . . declare two two-dimensional arrays
f = 1.; u = 0.; h = I./n; // . . . initialize arrays and parameters
Range I(l,n-I), J(l,n-1); // . . . define ranges for the interior

for(int iteration=O; iteration<lOO; iteration++)
u(I, J) = .2S~(u(I+1,J)+u(I-1,J)+~(I,J+l)+u(I,J-~)-f(I,J)*(h*h))~ // . . . data Parallel

4 Adaptive Mesh Refinement

Adaptive mesh refinement is the process of permitting local grids to be added
to the computational domain and thus adaptively tailoring the resolution of
the computational grid. The block-structured AMR algorithm implemented in
Overture provides such support for both simple problems with a single under-
lying grid, and problems that use the composite overlapping grid method. The
AMR algorithm itself uses the multiple grid functionality provided by the basic
Overture classes in an essential way. AMR results is greater computational
efficiency but is difficult to support. AMR++ is a library within the Overture
framework which builds on top of the previously mentioned components and pro-
vides support for Overture applications requiring adaptive mesh refinement.
AMR++ is current work being developed and supports the adaptive regrid-
ding, transfer of data between adaptive refinement levels, parent/child/sibling
operations between local refinement levels, and includes parallel AMR support.

AMR++ is a parallel adaptive mesh refinement library because it is uses classes
which derive their parallel support from the A++/P++ array class library.

Fig. 2. Hyperbolic surface grid generation is used to generate a smooth surface grid
over a surface coming from a CAD package.

5 Grid Generation

Overture has support for the creation of overlapping grids for complicated ge-
ometries. The process of generating an overlapping grid consists of two basic
steps. In the first step a number of component grids are generated. Each com-
ponent grid represents a portion of the geometry. The component grids must
overlap but otherwise can be created locally. Overture provides a collection of
Mapping classes that can be used to generate component grids including splines,
NURBS, bodies of revolution, hyperbolic grid generation, elliptic grid genera-
tion, trans-finite interpolation and so on. In addition we are working on methods
for reading files generated by CAD programs and generating grids. Figure (2)
shows how hyperbolic grid surface grid generation can be used to generate a
single smooth grid over a CAD surface described by a collection of trimmed
NURBS. This is accomplished with the aid of the SURGRD hyperbolic surface
grid generator[7].

Given the component grids, the overlapping grid then is constructed using
the Ogen grid generator. This latter step consists of determining how the different
component grids interpolate from each other, and in removing grid points from
holes in the domain, and removing unnecessary grid points in regions of excess
overlap. Ogen requires a minimal amount of user input. The grids in figure (3)
were all created with Ogen.

Fig. 3. Sample 2D and 3D overlapping grids generated with the Ogen grid generator.

6 Writing PDE solvers

This example demonstrates the power of the Overture framework by showing
a basically complete code that solves the partial differential equation (PDE)

on an overlapping grid.
The PlotStuff object is used to interactively plot contours of the solution

at each time step[l7].

int main0
\C

CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf"); // read the grid in
floatCompositeGridFunction u(cg); // create a grid function
u=l.; // assign initial conditions
CompositeGridOperators op(cg); // create operators
u.setClperators(cg);
Plotstuff ps; // make an object for plotting
// --- solve a PDE ----
float t=O, dt=.005, a=l., b=l., nu=.l;
for(int step=O; step<lOO; step++)
\c

u+=dt*(-a*u.x()-b*u.y()+nu*(u.xx()+u.yy()) 1;
t+=dt;
u.interpolate(); // interpolate overlapping boundaries
// apply the BC u=O on all boundaries
u.applyBoundaryCondition(O,dirichlet,allBoundaries,O.);
u.finishBoundaryConditions();
ps.contour(u); // plot contours of the solution

\l
return 0;

\I
% \end{verbatimcmd>

7 OverBlown

OverBlown is a fluid flow solver for overlapping grids built upon the Overture
framework. OverBlown is being designed to solve the Navier-Stokes equations
at all flow speeds, using different algorithms at different Mach numbers. Al-
though the currently distributed version only solves the incompressible Navier-
Stokes equations, we are developing a low-Mach number and high Mach number
algorithms as well as adding support for chemically reacting flows. Ref 4th order.

Figure (4) shows streamlines of the solution to the incompressible Navier-
Stokes equations around a rotating stirring stick and the script file that was
used to run OverBlown. Figure (5) shows a result from an incompressible flow
computation around a NACA 0012 airfoil. The grid was generated using the
elliptic grid generator in Overture .

* Choose the
overlapping grid: stir.hdf
stirshow
incompressibleNavierSto1
turn off twilight zone
project initial conditions
turn on moving grids
specify grids to move

stir
rotate
0. 0. 0.
.5

done
choose grids for implicit

all=explicit
stir=implicit

done
pde parameters

nu
.Ol

done
boundary conditions

all=noSlipWall
done
initial conditions

uniform flow
p=l.

final time (tf=)
.5

times to plot (tp=)

incompl-essible NS: t=2.50e-01, (u,v)
dk2.6e-03, nu=l De-02

F$% On the left is a sample script command file for running the flow solver
OverBlown. On the right is the result from the computation of incompressible flow
around a rotating stirring stick.

8 Software Avai .ability

The Overture framework and documentation is available for public distribution
from the web site, http: //www. llnl. gov/casc/Overture. The OverBlown
flow solver is available for limited distribution, please contact Bill Henshaw for
further information.

References

1. M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrody-
namics, J. Comp. Phys., 82 (1989), pp. 64-84.

2. K. D. Brislawn, D. L. Brown, G. Chesshire, and J. S. Saltzman, Adaptive composite
overlapping grids for hyperbolic conservation laws, LANL Unclassified Report 95-
257, Los Alamos National Laboratory, 1995.

3. D. L. Brown, An unsplit Godunov method for systems of conservation laws on
curvilinear overlapping grids, Math. Comput. Modelling, 20 (1994), pp. 29-48.

4. -, Classes for finite volume operators and projection operators, LANL unclas-
sified report 96-3470, Los Alamos National Laboratory, 1996.

5. D. L. Brown, Geoffrey S. Chesshire, William D. Henshaw and Daniel J. Quinlan,
Overture : An Object Oriented Software System for Solving Partial Differential
Equations in Serial and Parallel Environments, Proceedings of the Eight SIAM
Conference on Parallel Processing for Scientific Computing, 1997.

1.50
>

1.00

0.50

0.00

-0.5c

-1.00

-3 5"

*
+ OverBlown command file for
* flow past a naca0012 airfoil
*
+ grid name:
naca0012
* show file name
ob.shou

incompressibleNavierStokes
turn off twilight zone
final time (tf=)

5.
times to plot (tp=)

.5
plot and always wait
* no plotting
pde parameters

+ this next value for nu is too SI
+ have any effect on this grid.
nu

.00001
* choose 2nd-order artificial visa
ad21

2.
ad22

2.
done >

boundary conditions
all=noSlipWall
backGround(O.O)=inflowWithVelocit,

uniform(p=l.,u=l.
backGround(l,O)=outflou
backGroud(O,l)=slipWall
backGround(l,l)=slipWall
done

initial conditions
uniform flow

p=l., u=l.
project initial conditions
exit

-is0 -1.00 -0.50 0.00 050 1 00 1.50 2.00 2.50
x

Incompressible N’S, nu=l.OOOOOOe-05 p
I= 5.000. dt=1.34e-03

1.50 ml.00 -050 0.00 0.50 1.00 150 2.00 2.5
X

'I

Fig. 5. On the left is a sample script command file for running the flow solver
OverBlown. On the right is the result from the computation of incompressible flow
around a NACA 0012 airfoil.

6. , D. L. Brown, William D. Henshaw and Daniel J. Quinlan, Overture : An Object
Oriented Framework for Solving Partial Differential Equations, Scientific Comput-
ing in Object-Oriented Parallel Environments, Springer Lecture Notes in Computer
Science, 1343, 1997.

7. WM. Ghan and P.G. Buning, A Hyperbolic Surface Grid Generation Scheme and
Its Applications, AIAA paper 94-2208, 1994.

8. G. Chesshire and W. D. Henshaw, Composite overlapping meshes for the solution
of partial differential equations, J. Comp. Phys., 90 (1990), pp. l-64.

9. G. S. Chesshire, Overture : the grid classes, LANL unclassified report 96-3708,
Los Alamos National Laboratory, 1996.

10. Diffpack homepage, http://www.nobjects.com/diffpack.
11. F. C. Dougherty and J. Kuan, Transonic store separation nsing a three-dimensional

Chimera grid scheme, AIAA paper 89-0637, AIAA, 1989.
12. W. D. Henshaw, A faurth-order accurate method for the incompressible Navier-

Stokes equations on overlapping grids, J. Camp. Phys., 113 (1994), pp. 13325.
13. -, Finite difference operators and boundary conditions for Overture, user

guide, version 1 .llU, LANL unclassified report 96-3467, Los Alamos National Lab-
oratory, 1996.

14. -, Grid, GridFunction and Interpolant classes for Overture , AMR++ and
CMPGRD, user guide, version 1.00, LANL unclassified report 96-3464, LOS Alamos
National Laboratory, 1996.

15. -, Mappings for Overture : A description of the mapping class and documen-
tation for many useful mappings, LANL unclassified report 96-3469, Los Alamos
National Laboratory, 1996.

16. -, Ogen: an overlapping grid generator for Overture, LANL unclassified report
96-3466, Los Alamos National Laboratory, 1996.

17. -, PlotStuff: a class for plotting stuff from Overture , LANL unclassified
report 96-3893, Los Alamos National Laboratory, 1996.

18. Satish Balay, William Grow, Lois Curfman McInnes and Barry
Smith, The Portable Extensible Toolkit for Scientific Computation,
http://www.mcs.anl.gov/petsc/petsc.html.

19. Steve Karmesin et.al, Parallel Object Oriented Methods and Applications,
http://www.acl.lanl.gov/PoomaFramework.

20. D. Quinlan, Adaptive Mesh Refinement for Distributed Parallel Processors, PhD
thesis, University of Colorado, Denver, June 1993.

21. -, A++/P++ manual, LANL Unclassified Report 95-3273, Los Alamos Na-
tional Laboratory, 1995.

22. Xabier Garaizar, Richard Hornung and Scott Kohn, Structured Adaptive Mesh
Refinement Applications Infracture, http: //www. llnl. gov/casc/SAMRAI.

23. J. L. Steger and J. A. Benek, On the use of composite grid schemes in computa-
tional aerodynamics, Computer Methods in Applied Mechanics and Engineering,
64 (1987), pp. 301-320.

